Mixed-field orientation of a thermal ensemble of linear polar molecules
نویسندگان
چکیده
We present a theoretical study of the impact of an electrostatic field combined with nonresonant linearly polarized laser pulses on the rotational dynamics of a thermal ensemble of linear molecules. We solve the time-dependent Schrödinger equation within the rigid rotor approximation for several rotational states. Using the carbonyl sulfide (OCS) molecule as a prototype, the mixed-field orientation of a thermal sample is analyzed in detail for experimentally accessible static field strengths and laser pulses. We demonstrate that for a characteristic field configuration used in current mixed-field orientation experiments, a significant orientation is obtained for rotational temperatures below 0.7 K as well as using stronger dc fields.
منابع مشابه
Time-dependent analysis of the mixed-field orientation of molecules without rotational symmetry.
We present a theoretical study of the mixed-field orientation of molecules without rotational symmetry. The time-dependent one-dimensional and three-dimensional orientation of a thermal ensemble of 6-chloropyridazine-3-carbonitrile molecules in combined linearly or elliptically polarized laser fields and tilted dc electric fields is computed. The results are in good agreement with recent experi...
متن کاملOrientation of dipole molecules and clusters upon adiabatic entry into an external field.
The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field...
متن کاملMaking the best of mixed-field orientation of polar molecules: a recipe for achieving adiabatic dynamics in an electrostatic field combined with laser pulses.
We have experimentally and theoretically investigated the mixed-field orientation of rotational-state-selected OCS molecules and achieved strong degrees of alignment and orientation. The applied moderately intense nanosecond laser pulses are long enough to adiabatically align molecules. However, in combination with a weak dc electric field, the same laser pulses result in nonadiabatic dynamics ...
متن کاملVariable Thermal Conductivity and Thermal Radiation Effect on the Motion of a Micro Polar Fluid over an Upper Surface
The intent of this analysis is to explore the influence of thermal radiation paired with variable thermal conductivity on MHD micropolar fluid flow over an upper surface. The novelty of the present model is to consider the fluid flow along an upper horizontal surface of a paraboloid of revolution (uhspr) with the porous medium. This physical phenomenon is described by a set of coupled...
متن کاملEnhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces
Recent experiments have demonstrated the efficacy of orienting low rotational states of a linear polar molecule in a static electric field, «S , or aligning a molecule ~polar or not! in an intense nonresonant laser field, «L . We present theoretical results showing that the combined action of «S and «L can markedly sharpen orientation, particularly by introducing a pseudo-first-order Stark effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013